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Fruit ripening is a complex process that involves the coordination of genes, hormones, and environmental fac-
tors. Understanding the mechanism of fruit ripening is important to improve shelf life and storage duration. Our
current understanding of the fruit ripening mechanism is limited to model organisms such as tomatoes for
climacteric fruits and grapes for non-climacteric fruits. Studies on the fruit ripening mechanism for other non-
model fruits such as mangosteen, orange, and papaya are still limited. Recently, high-throughput sequencing
and mass spectrometry technologies have generated abundant omics-based data from various fruits. While it is
important to perform differential expression analysis to identify molecular changes, network analysis gives an
added value by integrating all the omics data to infer the interactions between molecules. This provides a more
comprehensive understanding of gene function, regulation, and mechanism to improve fruit shelf life. This re-
view illustrates different types of network analysis and their applications in the identification of hub genes,
proposing regulatory network models, metabolic shift detection, and guilt-by-association prediction of unan-
notated gene functions. The fruit ripening mechanism is also reviewed by integrating results from network
analysis to fill in the gaps of knowledge. Lastly, the perspectives of network analysis in fruit ripening are

discussed.

1. Introduction

Fruit ripening is a complex process that involves the coordination of
gene expression, cell-cell signaling, and various biochemical pathways
(Giovannoni et al., 2017). At the molecular level, it is a network of
genome, transcriptome, proteome, and metabolome that gives rise to a
concerted effect in fruit ripening. Regardless of whether climacteric or
non-climacteric fruits, fruit ripening eventually led to changes such as
cell wall softening, sugar accumulation, and color changes with the
production of aroma and volatiles (Giovannoni, 2004). It also leads to
senescence, increased pathogen invasion, and consequently decreased
fruit shelf life. Hence, understanding the molecular mechanisms of fruit
ripening is key to extending fruit shelf life and improving fruit quality.

With the advent of affordable high-throughput sequencing and
analytical chemistry technologies, large amounts of data are generated
at an unprecedented scale. These have resulted in the development of
omics research (Ko and Brandizzi, 2020). Omics profiling and compar-
ative analyses such as differential expression analysis enable large-scale
identification of molecular changes through studies of phenotypic
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variation, environmental factors, and the effects of various treatments
on fruit ripening (Costa-Silva et al., 2017). However, differential
expression analysis alone could not resolve the long-standing challenge
of deciphering the regulatory mechanism of fruit ripening (Horvath and
Langfelder, 2011).

Gene-gene interaction network is defined as the functional interac-
tion between pairs of genes that results in the phenotype observed in an
organism. Network analysis could be a powerful bioinformatics tool for
deciphering fruit ripening at the molecular level. It shortens the lengthy
and tedious screening or identification of different molecular compo-
nents for resolving their interactions, as well as holistically addresses the
biological questions regarding regulatory mechanisms of fruit ripening
as a whole (Higashi and Saito, 2013; Jordan et al., 2012; Ko and Bran-
dizzi, 2020).

To date, reviews on plant network analysis are limited, especially for
fruit ripening (Aoki et al., 2007; Higashi and Saito, 2013; Ko and
Brandizzi, 2020; Usadel et al., 2009; Wong and Matus, 2017; Yixiang
et al., 2010). In this review, we aim to provide an overview of the
network analysis performed on both climacteric and non-climacteric
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fruits reported since 2016 and discuss the applications of network
analysis in elucidating molecular processes of fruit ripening.

2. Types of network analysis

There are different types of biological networks (Fig. 1), which can
be distinguished by the molecular elements and the edge properties
(directed, undirected, and weighted), such as gene co-expression net-
works (GCNs), gene regulatory networks (GRNs), protein-protein
interaction networks (PPINs), metabolic networks, signaling networks,
and integrated networks (Tieri et al., 2018).

2.1. Gene co-expression networks

Gene co-expression networks (GCNs) are undirected graph that
consists of interacting genes represented by nodes (genes) and edges
(interactions between genes) (Tieri et al., 2018). This approach uses
transcriptomic data generated from microarray or RNA-Sequencing
(RNA-Seq) (Table 1). GCNs are constructed using gene pairs that
exceed a predefined threshold of calculated co-expression measures,
such as Pearson’s or Spearman’s rank correlation coefficients (Lee et al.,
2015; Serin et al., 2016). There are several tools available for GCNs, such
as CoExpNetViz (Tzfadia et al., 2016), Weighted Gene Co-expression
Network Analysis (WGCNA) (Langfelder and Horvath, 2008), LeMoNe
(Michoel et al., 2007), Consensus Coexpression Network Analysis
(CCNA) (Shahan et al., 2018), and Algorithm for the Reconstruction of
Accurate Cellular Networks (ARACNe) (Margolin et al., 2006). WGCNA
is the most popular R software used for such analysis (Tables 1 and 3)
and the gene interactions are commonly visualized with Cytoscape. In
general, WGCNA clusters highly correlated or co-expressed genes
together into modules (Langfelder and Horvath, 2008). A gene within
the module with the highest connection with other genes in the network
is defined as a hub gene (Hollender et al., 2014). CCNA, on the other
hand, is computed using Euclidian distance. The frequency of
co-clustering between gene pairs in 1,000 runs of WGCNA with ran-
domized parameters and sampling is used to calculate the bootstrap
confidence intervals (Shahan et al., 2018). The tutorial of WGCNA can
be referred for detailed guidelines (Horvath and Langfelder, 2011).

2.2. Gene regulatory networks

Gene regulatory networks (GRNs) are also known as transcriptional
regulatory networks (Tieri et al., 2018). It is usually represented by a
directed graph that shows the linkage between regulators and their
targets. Cis-regulatory element (CRE) is the non-coding DNA region
(usually 100-1,000 bp) that regulates the transcription of its targets in
the vicinity (Davidson, 2010). Meanwhile, the trans-regulatory element
regulates the transcription of its targets distantly. The primary gene
expression data used to generate GCNs are from both microarray and
RNA-seq. There are several methods used to infer GRNs (Hecker et al.,
2009; Liu et al., 2019) and the most popular method is based on mutual
information (MI), which is a measure of the mutual dependence between
the two variables and quantifying one variable given knowledge of
another (Tieri et al., 2018).
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2.3. Protein-protein interaction networks

Similarly, protein-protein interaction networks (PPINs) also
comprise nodes that represent proteins with an edge that connects two
interacting proteins (Tieri et al., 2018; Vidal et al., 2011). PPINs refer to
physical interactions among proteins and each has undirected edges
(Yixiang et al., 2010). Several plant protein databases are available for
protein-protein interaction network analysis such as BioGRID (Biolog-
ical General Repository for Interaction Datasets) (https://thebiogrid.
org/) (Oughtred et al., 2021), PlaPPISite (http://zzdlab.com/plapp
isite/index.php) (Yang et al., 2020), TAIR (The Arabidopsis Informa-
tion Resource) (https://www.arabidopsis.org/) (Berardini et al., 2015),
and Search Tool for the Retrieval of Interacting Genes/Proteins
(STRING) (https://string-db.org/) (Szklarczyk et al., 2019). STRING is
the most popular database used for PPINs (Table 2). It consists of both
known and predicted protein-protein interactions and information on
gene co-expression. The data sources are derived from experimental
data, computational predictions, as well as known protein-protein in-
teractions from public sources (Szklarczyk et al., 2019). PPINs are useful
in determining a novel function and specificity of a protein in addition to
pathway prediction (Hawkins and Kihara, 2007; Khan et al., 2019).

2.4. Integration of multi-omics data in networks

Multi-omics approaches in studying fruit ripening favor the inte-
gration and incorporation of the various types of omics data through
different approaches (Jamil et al., 2020) for network analysis (Table 3).
The integrated co-expression analysis combining transcriptome and
metabolome helps to predict gene functions associated with the accu-
mulation of specific metabolites. As such, the datasets used for inte-
grated network analysis were generated from different experimental
conditions such as fruit development and ripening (Arhondakis et al.,
2016; Zhang et al., 2019a; Zhang et al., 2019b), or in combination with
other factors such as temperature or exogenous hormone treatments
(Luo et al., 2020; Mou et al., 2016; Tang et al., 2020), differences in
cultivars or mutants (Bodanapu et al., 2016; Feng et al., 2021; Leng
et al., 2021; Wu et al., 2016), and environmental factors (Karagiannis
et al., 2020; Sun et al., 2019). Furthermore, integrated networks linked
to CRE (Kuang et al., 2021; Loyola et al., 2016; Nicolas et al., 2014;
Savoi et al., 2016; Wong et al., 2017Wong et al., 2018) have been used
for investigating the regulatory role on target genes.

3. Network conditions and approaches

3.1. Condition-independent versus condition-dependent experimental
design

Network analysis can be divided into two categories (Fig. 2), namely
condition-independent and condition-dependent (Aoki et al., 2007;
Usadel et al., 2009). The condition-independent approach is conducted
by using different data sources from multiple tissues and conditions to
provide a global overview of gene co-expression patterns (Usadel et al.,
2009). Therefore, this approach is more suitable to investigate the
interacting genes with the gene of interest without considering tissues
and conditions. AppleMDO (Da et al., 2019), Melonet-DB (Yano et al.,
2017), and TomExpress (Zouine et al., 2017) are examples of web-based

Integrated networks

Fig. 1. Different types of network analysis using different omics data.
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Table 1
Applications of gene co-expression networks using transcriptome data to study the ripening mechanism of climacteric and non-climacteric fruits.
Fruit Tool/Method Target(s) Main Findings Refs.
Apple WGCNA - 1-Methylcyclopropene (1-MCP) treatment could activate the transcription of Storch et al., 2017
genes involved in the anabolic pathway.
Apricot Cytoscape Phenylpropanoid biosynthetic Transcription factor (TF) NAC secondary wall thickening promoting factor 1 Zhang et al., 2019¢
genes (NST1) could regulate the expression of a cinnamyl alcohol dehydrogenase
(CAD) gene for lignification.
Banana CoExpNetViz ERS2 Identification of two-component system (TCS) members that directly interact Dhar et al., 2019
with MaERS2.
Banana Cytoscape MADS24 and MADS49 MaMADS24 interacts with hormone-responsive TFs, starch biosynthesis, and Liu et al., 2017
transportation. MaMADS49 interacts with enzymes in ethylene biosynthesis and
the conversion of starch to sugar.
Banana Cytoscape OFP1 Identification of TFs and auxin response proteins that interact with ovate family =~ Zhang et al., 2020b
protein 1 (MaOFP1).
Citrus* WGCNA Sugar/acid ratio-associated Identification of sugar/acid ratio-related hub genes (Cs1g24590 and Cs5805940)  Qiao et al., 2017
genes with unknown function.
Durian Correlation Ripening-associated ERFs with ~ Ethylene response factor (ERF) gene family, DzERF6 and DzERF9, are negative Khaksar and
network ripening-related genes and positive regulators of ethylene biosynthesis, respectively. Sirikantaramas, 2021
Durian Expression CAMTA3 and CAMTAS8 Identification of co-expressed genes that are positively and negatively correlated  Igbal et al., 2021
Correlation with calmodulin-binding transcription activator (CAMTA) gene family,
Network D2CAMTA3 and DzCAMTAS, during fruit ripening.
Grape* WGCNA bHLHO75 and WRKY19 The hierarchical cascade of gene activation involving basic helix-loop-helix075  Fasoli et al., 2018
(VWbHLHO075) and VVWRKY19 at the onset of fruit ripening was proposed.
Grape* SWItchMiner - Identification of switch genes that act as master regulators in white and red- Massonnet et al., 2017
skinned grapes during the transition from herbaceous to maturation phase.
Grape* WGCNA - GDSL and xyloglucan endotransglucosylase/hydrolase 30 (XTH30) were Guo et al., 2020
identified as the hub genes in the modules related to hydrogen peroxide
treatment with involvement in the fruit ripening mechanism.
Kiwi WGCNA - Identification of GRAS13 as a hub gene related to fruit ripening. Brian et al., 2021
Kiwi CCNA - TF zinc transporter (AdZAT5) trans-activated the expression of pectate lyase Zhang et al., 2021b
(AdPL5) and p-galactosidase (Adp-Gal5) in the pectin degradation pathway.
Lychee* WGCNA MYB, GST4, SGR, ABI5 Identification of novel candidate genes (LcbHLH, zinc finger, LcWRKY) that may  Ding et al., 2021
be involved in peel coloration.
Melon * WGCNA - Development of an online database (Melonet-DB; https://melonet-db.dna.affrc. Yano et al., 2017
go.jp/ap/top) for functional genomics study of muskmelon. Targeted approach
network analysis can be done using the ’co-expression viewer’ feature in the
database.
Melon * WGCNA Fruit ripening-related genes Identification of tomato AGAMOUS-like gene homolog, MELO3C019694.jh1, in Yano et al., 2020
Harukei-3 fruit, which co-expressed with ethylene-related genes.
Papaya WGCNA - Pulp softening is coordinated by increasing the expression of polygalacturonase  Soares et al., 2021
(PG) and decreasing the expression of pectinesterase (PME) and PL.
Pear WGCNA Ethylene-related genes There was direct interaction between the ethylene synthesis gene, S-adomet Zhang et al., 2016
synthetase (SAMS), ethylene receptor, and laccase during pear fruit
development.
Pepper* ARACNe-AP ARP9 and MED25 MED25 (cis-regulated gene) interacted with TFs (e.g., AG and WRKY) that play =~ Diaz-Valenzuela et al.,
an important role in fruit ripening. 2020
Pepper* WGCNA - Identification of several TRs such as F-box protein SKIP23, GATA, U-box domain-  Li et al., 2021a
containing protein 52, FYVE/PHD-type, RING/FYVE/PHD-type, and
CONSTANS-LIKE 9 that may involve in the regulation of capsanthin-capsorubin
synthase gene.
Pepper* WGCNA R2R3-MYB and CBGs CaR2R3-MYB genes play important roles in regulating capsaicin and Wang et al., 2020a
dihydrocapsaicin biosynthesis.
Strawberry ~ WGCNA - FveERF might regulate the expression of AAT (acyltransferase) and subsequently ~ Li et al., 2020
influence ester accumulation.
Tomato” TomExpress co- - Development of tomato RNA-seq online database (TomExpress; http://gbf. Zouine et al., 2017
expression tool toulouse.inra.fr/tomexpress) comprising transcriptome data generated from
different organs and development, mutants, biotic interactions, and hormone
treatment. The database is useful for expression, clustering, and network
analysis.
Tomato WGCNA - TF SIGRAS38 might regulate carotenoid and ethylene metabolism. Shinozaki et al., 2018
Tomato Correlation Auxin- and ethylene-related A fruit ripening inhibition model was established. Exogenous auxin application  Li et al., 2016
network genes altered the expression of auxin- and ethylene-related genes via the inhibition of
demethylation.
Tomato Correlation GGPPS isoforms Two isoforms of geranylgeranyl diphosphate synthase (GGPPS), SIG2 and SIG3 ~ Barja et al., 2021
network function in GGPP production were highly co-expressed with most of the genes

involved in isoprenoid pathways compared with SIG1.

" Condition independent.

" non-climacteric fruit.

co-expression network databases constructed by using a
condition-independent approach using ‘Golden Delicious’ apple, ‘Har-
ukei-3’ melon, and tomato, respectively. Hence, these databases could
serve as a valuable reference for predicting the putative functions of
homologous genes from other plants.

Condition-dependent studies are more commonly performed in fruit

ripening studies by using specific datasets of different cultivars, abiotic
stress conditions, or developmental stages. This approach pinpoints the
differences between physiological conditions from which gene functions
are inferred (Obayashi et al., 2011). For instance, it enables the identi-
fication of unique switch genes in white-skinned and red-skinned grapes
during the transition from the herbaceous to the maturation phases,
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Table 2
Applications of protein-protein interaction networks to study the ripening mechanism of climacteric and non-climacteric fruits.
Fruit Tool/Method Target(s) Main Findings Refs.
Akebia STRING - PL, pectinesterase (PME), f-GAL, and peroxidase (PRX), were identified as the hub proteins ~ Niu et al., 2021
trifoliata that might participate in fruit softening.

Banana STRING - PPIN Construction of 1,988 upregulated genes or proteins in the banana peel during Yun et al., 2019
ripening. The key proteins identified are acetyl-coenzyme A carboxylase, receptor protein
kinase, inactive leucine-rich repeat receptor-like protein kinase, glutamate dehydrogenase,
ATP-citrate synthase, glycine dehydrogenase, and glucose-6-phosphate isomerase.

Grape " NetworkAnalyst — — Identification of key proteins related to fruit development such as RAN1, cytochrome P450  Benny et al., 2019
51, the family of CBL interacting protein kinases, ubiquitin-related reactions, and heat
shock protein 70 (HSP70).

Grape " STRING BBX18 and BBX19 B-BOX (BBX) gene family, VvBBX18 and VvBBX19, play roles in anthocyanin accumulation ~ Wei et al., 2020
through the VwHY5-mediated signal transduction network.

Jujube * STRING bHLHs ZjbHLH15 affects anthocyanin synthesis. Li et al., 2019b

Kiwi STRING - Energy-related proteins formed the main cluster amongst the ethylene and/or chilling- Minas et al., 2016
responsive proteins and interacted with proteins related to disease/defense, protein
destination/storage, protein synthesis, and metabolism.

Kiwi STRING - Ripening inhibitors affected proteins related to energy, protein destination/storage, and Minas et al., 2018
disease/defense without ethylene treatment; while perturbed proteins related to disease/
defense, energy, transporters, protein destination/storage, signal transduction, and
secondary metabolism with ethylene treatment.

Kiwi STRING - Exogenous ethylene treatment affected proteins related to allergens/fruit ripening, defense ~ Shin et al., 2020
response, and protein biosynthesis.

Kiwi STRING - Ethylene mainly regulates sugar catabolism and chlorophyll degradation during fruit Salazar et al.,
ripening. 2021

Mango” STRING Rab proteins and cell wall ~ Rab GTPases influence fruit softening through interactions with cell wall softening-related =~ Lawson et al.,

softening proteins proteins and vesicle trafficking proteins. 2020
Melon* STRING Sugar metabolism Auxin response factor (AUXRF) gene family, CnAUXRF1, CmAUXRF2, and CmAUXRS Schemberger
proteins interact with sucrose synthase 1 (CmSUS1), trehalose-6-phosphate synthase 7 (CmTPS7), et al.,, 2020

and CmTPS5 through hexosyltransferase and argonaute proteins in the sugar pathway.

Strawberry* STRING bHLH FvbHLH25, FvbHLH29, FvbHLHS80, and FvbHLH98 interact with each other and participate Zhao et al., 2018
in strawberry anthocyanin biosynthesis during ripening.

Tomato” STRING BAG B-cell lymphoma2 (Bcl-2)-associated athanogene (BAG) interacts with HSP70 in fruit Irfan et al., 2021
ripening.

Wax apple STRING - The differentially expressed proteins were involved in amino acid synthesis, glycolysis, Al-Obaidi et al.,
carbon metabolism, and carbon fixation. 2018

" Condition independent.

" non-climacteric fruit.

through comparative transcriptomics and integrated network analysis
(Massonnet et al., 2017; Palumbo et al., 2014). This helps to identify the
genes that are responsible for the differential accumulations of antho-
cyanin in these varieties.

3.2. Non-targeted versus targeted approaches

Meanwhile, network analysis can be divided into non-targeted or
targeted approaches regardless of conditions (Fig. 2) but depends on the
measurement methods or data used for analysis (Aoki et al., 2007). The
non-targeted or global approach uses all molecules in the omics data for
network analysis. For instance, WGCNA can be used to correlate tran-
scriptome data with the content of organic acids and soluble sugars
(malic acid, citric acid, quinic acid, fructose, glucose, sucrose, and
abscisic acid) in citrus (Wu et al., 2016). This approach was applied to
determine modules that were highly correlated with total soluble sugar
and anthocyanin content in grape (Leng et al., 2021). Whereas, the
targeted approach depends on the selected “guide gene” based on
experimental knowledge and literature review (Lisso et al., 2005). The
guide gene approach is useful for studying the cross-talk between
ethylene and ABA in regulating climacteric tomato fruit ripening (Mou
et al., 2016) and screening co-expressed genes that are directly related to
the gene of interest (Dhar et al., 2019; Liu et al., 2017; Zhang et al.,
2020b; Zhang et al., 2016). Additionally, databases such as AppleMDO,
Melonet-DB, and TomExpress (Da et al., 2019; Yano et al., 2017; Zouine
et al., 2017), are useful for searching co-expressed genes of a targeted
gene by submitting the locus/gene ID (guide gene) in the “Co-ex-
pression” and “Coexpression viewer”” tools.

4. Applications of network analysis in fruit ripening

In general, there are five applications of network analysis in fruit
ripening, namely (1) identification of the hub gene that controls certain
molecular mechanisms; (2) construction of regulatory network models;
(3) detection of metabolic shift; (4) finding a new role of known or
unknown genes; and (5) predicting the gene function via guilt-by-
association, which are discussed in the following section.

4.1. Identification of hub genes

A hub gene is defined as a “highly connected gene” with other genes
in the same module or a gene with high module membership (kME)
(Horvath and Langfelder, 2011). For example, a single TF may act up-
stream of ethylene biosynthesis and hence regulates multiple fruit
ripening traits, or it acts downstream of ethylene biosynthesis and reg-
ulates specific fruit ripening traits. On the other hand, a key gene could
be a structural gene that is regulated by the TF or TR. Both play an
important role in a specific metabolic pathway as their expressions are
highly correlated with fruit characteristics. The identification of hub and
key genes is well-reported. For instance, hub genes related to fruit
ripening (Brian et al., 2021), lignin content (Feng et al., 2021; Zhang
et al.,, 2019c), ester content (Li et al., 2020), capsanthin-capsorubin
synthase (CCS) gene expression (Li et al., 2021a), °Brix level, and cul-
tivars in red versus white grape berries (Ghan et al., 2017) have been
identified.

Nonetheless, some of the reported hub genes related to certain fruit
ripening pathways/traits are not functionally validated by downstream
experiments. Predicted hub genes and structural genes should be veri-
fied for assured understanding of fruit ripening metabolic pathways.
Functional analysis such as the generation of mutants is exemplified by
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Table 3
Application of integrated networks to study the ripening mechanism of climacteric and non-climacteric fruits.
Fruit Tool/Method Target(s) Elements  Main Findings Refs.
Applen Global co-expression - E,GT Development of a multi-omics online database (AppleMDO; http:// Da et al., 2019
network bioinformatics.cau.edu.cn/AppleMDO/) with functional gene annotation, co-
expression network (global and conditional networks), protein-protein
interaction, gene ontology (GO) enrichment analysis tool, and chromatin
states.

Apple STITCH - M, P Protein-metabolite network associated with low- and high-altitudes in peel Karagiannis
ripening. et al., 2020

Apricot WGCNA - M, T Identification of TF PaMYB10 as the hub gene that works with seven Xi et al., 2019
structural genes to regulate anthocyanin biosynthesis.

Apricot WGCNA - M, T TFs related to light signaling (phytochrome interacting factor: PIF3/4 and Zhang et al.,
long hypocotyl 5: HY5), phytohormones (ERF4/5/12, AP2, AP2-like, and 2019a
BZR1), and development factors (MADS14, NAC2/25, MYB1R1/44, Golden 2-

Like: GLK1/2, and WRKY6/31/69) might be involved in the regulation of
carotenoid metabolism.

Apricot WGCNA - M, T Flavor production particularly sucrose, malate, lactones, and apocarotenoids ~ Zhang et al.,
is controlled by the combination of a regulatory network consisting of 2019b
ethylene and ABA signaling, ripening factors, and stress transduction.

Banana WGCNA - CRE, T MaZFP46/48, MaTALE1/2, and MaG2-1/2 in fruit ripening. Kuang et al.,

2021

Blueberry Regularized canonical Phenolic pathway M T MYBA, MYBPA1, bHLH2, and MYBC2 TFs regulate anthocyanin biosynthesis. Giinther et al.,

correlation analysis genes 2020

Citrus™ Correlation network - M, T TATI and VTE4 affect tocopherol content. Rey et al., 2021

Citrus* WGCNA - M, T TFs RD26, WRKY42, and MYB21/77 influence glucose and fructose content. Wu et al., 2016

Citrus* WGCNA - M, T Identification of hub gene, CsERF74, related to lignification. Feng et al., 2021

Grape* WGCNA - M, T Light-responsive TFs (bHLH, MYB, WRKY, NAC, and MADS-box) affect the Sun et al., 2019
content of phenolic content.

Grape* WGCNA - M T Identification of novel CREs (AuxRE/ETT) in the promoters of gene modules Savoi et al.,
responsive to water deficit. 2017

Grape* WGCNA - M, T GATA26 regulates norisoprenoid accumulation by up-regulating VwCCD4a, He et al., 2021
VVPSY2, VPSY3, and two VwZEPs, while down-regulating VvPSY1 and VvZDS.

Grape* WGCNA - M, T Two hub genes, 4-coumarate-CoA ligase (4CL) and copper amine oxidase Leng et al., 2021
(CuAO), regulate the total soluble solid and total anthocyanin content in
cultivar ‘Nantaihutezao’.

Grape* WGCNA - M, T Identification of hub and key genes related to anthocyanins and soluble sugars ~ Zhang et al.,
and proposed a fruit quality model under red and blue light treatments. 2021a

Grape* Mutual Rank (MR)-based - CRE, T Identification of CRE-driven modules in stress- and development-specific Wong et al.,

coexpression analysis GCNs. 2017

Grape*s MR gene co-expression Major intrinsic CRE, T Promoter analysis of the major intrinsic protein (MPI) and their co-expressed ~ Wong et al.,

network (GCN) protein (MIP) genes showed the enrichment of different types of CRE such as AP2/ERFsand 2018
NAGs.
Grape* MR and PCC as co- HY5 and HYH CRE, T Construction of a HY5 and HYH co-expression network by integrating data Loyola et al.,
expression similarity sets from gene expression atlas (microarray) and stress-related data (RNA-seq 2016
indices and VTCdb) with the identification of CREs in the co-expressed genes.
Grape* Global metabolite- Linalool, nerol, M, T Construction of a monoterpene gene-metabolite network and identification of ~ Savoi et al.,
transcript network and a-terpineol drought-responsive and MYB recognition sites through promoter enrichment 2016
analysis.

Kiwi WGCNA - M, T TFs AANAC5 and AdDof4 activate and suppress the expression of AdFADI1, Zhang et al.,
respectively. 2020a

Kiwi Correlation analysis p-carotene, M, T Three ethylene response factors (ERFs), Acc29730, Acc25620, and Acc23763, Liu et al., 2021

chlorophyll regulate the expression of carotenoid and chlorophyll-related genes (AcPAO2,
b, and chlorophyll AcLCY-p, and AcCCD1).
a

Mango WGCNA - M, T TFs MibZIP66 and MibHLH45 activate the key gene (MiPSY1) that regulates Ma et al., 2021
p-carotene biosynthesis

Peach Cytoscape - M, T Identification of key anthocyanin compounds and transcripts contributing to ~ Ying et al., 2019
the different fresh colors in different cultivars.

Peach WGCNA - M,P, T Construction of a comprehensive ethylene biosynthesis model by filling inthe =~ Zeng et al., 2020
role of auxin in the fruit ripening pathway.

Plum WGCNA - M T UDP-galactose metabolism in climacteric plum (Santa Rosa) and non- Farcuh et al.,
climacteric plum (Sweet Miriam) produces galactose and raffinose, 2017
respectively.

Tomato Linear correlation - M, T Organic acids (citric acid, malic acid, butanedioic acid, cis-aconitic acid) were ~ Tang et al., 2020

network analysis highly correlated with plants hormones (ethylene and ABA), TFs (MYB, AP2/
ERF, WRKY, NAC), and genes (IDH3, PDHA, MDH, PEPC3, PEPCK1) involved
in primary metabolic pathways.

Tomato LeMoNe CRE, T Six calcium related-genes [calcium-binding EF (CBEF), calmodulin-like Arhondakis
protein 1 (CLP1), calmodulin-like protein (CLP), CBL-interacting protein et al., 2016
kinase 18 (CBLPK18), calcium-dependent protein kinase 3 (CDPK3), and
calmodulin-binding heat-shock protein (CBHSP)] have the W-box CRE that is
recognized by WRKY22 TF.

Tomato Correlation network ABA and ethylene M, T ABA network involves fruit ripening TFs, such as NAC—NOR, TDR4, AP2A, Diretto et al.,
HB-1, RIN, TAGL1, CNR, and ethylene-biosynthesis-related genes. 2020

Tomato Correlation network ABA and ethylene M, T ABA acted upstream of ethylene biosynthesis and signaling, while ethyleneis ~ Mou et al., 2016

the hub in the tomato fruit ripening network.

(continued on next page)
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Table 3 (continued)
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Fruit Tool/Method Target(s) Elements  Main Findings Refs.

Tomato WGCNA - M, T TFs zinc finger proteins, FAR1, and B3 were associated with the ascorbic acid ~ Sacco et al.,
content while TFs bHLH, NAC, and MADS-box, were associated with 2019
phenylpropanoid accumulation.

Tomato Correlation network - H, M ABA was not detected in the shr mutant metabolite and hormone networks. Bodanapu et al.,

-mutant 2016

Strawberry* WGCNA - M, T ABA and sucrose treatments inhibit glycolysis but accelerate fruit ripening. Luo et al., 2020

CRE: Cis-regulatory element; E: epigenomic; G; genomics; H: hormones; M: metabolomics; P: proteomics; T: transcriptomics.

" Condition independent.
" non-climacteric fruit.

Sample

Network condition

Multiple tissues and conditions

Condition-independent

Different cultivars, abiotic stress
conditions, or development stages

Condition-dependent

Network approach

Fig. 2. Different types of network conditions and approaches in network analysis.

RNAi-silenced SIGRAS38 tomato fruits that showed a lower content of
ethylene and lycopene (Shinozaki et al., 2018). Dual luciferase and yeast
one-hybrid assays verified that p-carotene biosynthesis in mango was
regulated by MibZIP66 and MibHLH45 TFs (Ma et al., 2021) while
dual-luciferase system and electrophoretic mobility shift assays vali-
dated that TF AdZATS trans-activated the expression of AdPL5 and
Adb-Gal5 during pectin degradation (Zhang et al., 2021b) in kiwi.
Transient gene overexpression (for instance, PaMYBI0) in the
non-blushed skin cultivar ‘Luntaixiaobaixing’ resulted in blushed skin
observed during the maturation stage (Xi et al., 2019). Furthermore,
bagging significantly decreased the gene expression of PaMYB10 and
subsequently reduced anthocyanin accumulation in apricot “Jianali’ (Xi
et al., 2019). RT-qPCR experiments ascertain the relative gene expres-
sion level of differentially expressed genes (Sacco et al., 2019; Sun et al.,
2019).

While expression studies help to identify differentially expressed
genes in different fruit developmental stages and cultivars, network
analysis narrows down the screening of thousands of genes by identi-
fying key genes that play a central role in the metabolic pathway asso-
ciated with specific traits. Although the general regulators and structural
genes that are involved in the specific mechanism of the fruit ripening
pathways are known, the orthologs of these genes in other species
remain to be determined. Hence, network analysis can be applied to
discover genes from the same families associated with specific metabolic
pathways. These genes could then serve as useful molecular markers for
selecting fruits with better quality and prolonged shelf life through crop
breeding or genetic improvement.

4.2. Construction of regulatory network models

Although the general fruit ripening metabolic pathway is well
established and conserved across species, our knowledge of the fruit
ripening mechanism is still incomplete. Each species has its specialized
metabolisms that are affected by different factors. Hence, hub genes and
structural genes identified through network analysis could help eluci-
date the regulatory network.

Network analysis was applied to identify factors that influenced
carotenoid metabolism and flavor compounds in the apricot cultivar
‘Luntaixiaobaixing’ (Zhang et al., 2019a) and ‘Jianali’ (Zhang et al.,
2019b), respectively. Likewise, fruit quality trait and fruit ripening
model were proposed as a consequence of red/blue light treatment
(Zhang et al., 2021a), hydrogen peroxide treatment (Guo et al., 2020),
auxin treatment (Li et al, 2016), and low versus high altitudes

(Karagiannis et al., 2020). Furthermore, a comprehensive peach
ethylene biosynthesis network involving auxin in the fruit ripening
pathway (Zeng et al., 2020) was constructed. In peach, the anthocyanin
regulatory network of cultivars with different flesh colors (milk-white,
yellow, and blood) comprises several key anthocyanin compounds and
transcripts (Ying et al., 2019). The hierarchical cascade of gene activa-
tion during grape fruit ripening was proposed in which TF bHLHO075
activates WRKY19 and cell wall softening genes, followed by the acti-
vation of other ripening-related genes (Fasoli et al., 2018).

Hence, the proposed network based on network analysis helps to give
a better understanding of all factors that affect the metabolic mecha-
nisms and the hierarchical transcription of genes during fruit ripening.
In addition, it also explains the phenotypic differences observed due to
different treatments and cultivars as well as provides a framework for
future functional studies.

4.3. Detection of metabolic shift

With the development of targeted and non-targeted metabolomics
approaches, network analysis is useful to detect the metabolic shift. For
instance, the Japanese plum cultivar Sweet Miriam (SM) exhibited a
non-climacteric ripening pattern due to the sugar metabolic shift in the
UDP-galactose metabolism with higher contents of sorbitol, galactinol,
and raffinose (Farcuh et al., 2017). Additionally, sucrose and ABA
treatment led to the inhibition of glycolysis and accelerated strawberry
ripening (Luo et al., 2020). In contrast, 1-MCP treatment led to anabolic
pathway activation and delayed apple fruit ripening (Storch et al.,
2017). Nitric oxide (NO) overproduction in the tomato shr mutant
resulted in fruit growth and ripening suppression as there were changes
in metabolites, especially those involved in the tricarboxylic acid (TCA)
cycle, as compared to the wild-type (Bodanapu et al., 2016). Thus, un-
derstanding the metabolic shift during fruit ripening or due to certain
treatments, such as 1-MCP treatment or NO production helps improve
the fruit shelf life.

4.4. Finding a new role of known or unknown genes

There are many genes with multiple roles in biological processes or
molecular functions. Some of them are yet to be explored and deter-
mined. By studying the co-expressed genes/molecules in a network, the
role of known and unknown genes can be uncovered.

Network analysis revealed that CCCH-type zinc finger TFs are po-
tential regulators of ascorbic acid and phenolic accumulation in tomato
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(Sacco et al., 2019) and participated in peel coloration in lychee (Ding
et al., 2021). Three TFs, MaZFP46/48, MaTALE1/2, and MaG2-1/2,
were reported for the first time involved in fruit ripening (Kuang et al.,
2021). Similarly, both AANAC5 and AdDof4 were suggested to be
involved in fruit aroma and volatile metabolism (Zhang et al., 2020a). In
addition, homeobox genes (MELO3C022921 and MELO3C018088) were
identified as highly associated with the volatile-related genes, CmAAT1
and CmAAT2 (Yano et al., 2017). Network analysis also identified two
hub genes (Cs1g24590 and Cs5805940) of unknown functions without
Arabidopsis homolog that might determine the sugar/acid ratio in four
citrus varieties, namely Succari (acidless), Bingtang (low acid), and
Newhall with Xinhui (normal acid) (Qiao et al., 2017).

Such findings refine our current knowledge of the TFs and structural
genes involved in specific metabolic pathways of different species.
However, functional characterization is required to ascertain the roles of
species-specific genes in the fruit-ripening pathway.

4.5. Predicting the gene function via guilt-by-association

Network analysis is also useful for predicting the function of
uncharacterized genes based on the gene ontology (GO) enrichment
analysis on the same group of co-expressed genes with known functions
(Da et al., 2019) or through a protein-protein interaction database (e.g.,
STRING). For instance, FvbHLH25, FvbHLH29, FvbHLH80, FvbHLH98,
VvBBX18, and VvBBX19 are predicted to participate in anthocyanin
biosynthesis pathway (Bai et al., 2014; Chang et al., 2008; Wei et al.,
2020; Zhao et al., 2018), while Rab GTPases are involved in fruit soft-
ening (Lawson et al., 2020) due to their interactions with proteins
involved in anthocyanin biosynthesis/accumulation and cell wall

ACO CNR
ERES ACS \ ERF9

GRAS38
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softening-related proteins, respectively.

Most of the fruit ripening studies focused on the molecular regulation
of ethylene or ABA synthesis. The post-translational studies of the fruit-
ripening proteins are still scarce. The recent increase in proteomics data
helps deepen our understanding of biological processes during fruit
ripening. In kiwi, studies were performed on protein network clusters
from exogenous ethylene treatment (Shin et al., 2020), ethylene and/or
chilling treatments (Minas et al., 2016), and ripening inhibitor treat-
ment with or without exogenous ethylene exposure (Minas et al., 2018).
Further analysis of the protein clusters identified several proteins that
play important role in fruit ripening, such as kiwellin, actinidain, met-
allothionine, ethylene-related regulated enzymes (Shin et al., 2020), and
enolase (Minas et al., 2016; Minas et al., 2018). Enolase (also known as
phosphopyruvate hydratase) was also identified as the key protein in
wax apple fruit ripening (Al-Obaidi et al., 2018). Enolase converts
phosphoglycerate to phosphoenolpyruvate during glycolysis and is
known to play an important role in tomato fruit ripening (Srivastava
et al., 2010) and grape (Giribaldi and Giuffrida, 2010). Therefore, PPIN
broadens our understanding of fruit ripening pathways involved in fruit
ripening by implicating the roles of interacting proteins.

5. Fruit ripening mechanism

The findings from the network analysis help to complete the picture
of fruit ripening mechanism as depicted in Fig. 3.

For climacteric fruits, ethylene (CoHy4) is the main phytohormone
that regulates fruit ripening. During climacteric fruit ripening, there is
an elevated level of ethylene detected. However, this pattern is not
observed in non-climacteric fruit during the ripening stage and ethylene

ARF2a/4/5
SAUR2/36/37/69

ARF7a/8b/24
GH3-3/4
IAA4/6/8/15 P
SAURS52/63 ™

O

Sugar metabolism
CFBP, CytiNV, MYB21/77, SPS, SUS, TPS,
RD, VINV, WRKY42

Lignin production
C3H, CAD, CCR, COMT, ERF74, F5H, NST

Organic acid metabolism

AP2/ERF, IDH3, MDH, MYB, PDHA,
PEPC, PEPCK, NAC, WRKY

Anthocyanin accumulation

4CL, BBX, bHLH2/15/25/29/80/98 CUAO,
MYB10/MYBA/MYBC2/MYBPA1

CTR, EIN2, ETR
EIL,

EIN3
ERFa2/d1

k Fruitripening

Carotenoid accumulation
AP2, bHLH45, bZIP, BZR, ERF4/5/12,

PYR/PYL/RCARs
PP2C-SnRK2

AREBs/ABFs

— inhibit

—> activate

RIN targets

Phenolic compound accumulation

bHLH, F3H, FLS, FNS, IFS, MYB9/10b
NAC, MADS-box, MYB, NAC, WRKY

Ascorbic acid content

B3, CCCH-type Zinc Finger, FAR

Aroma and volatile production

AAT, CCD4a, Dof, ERF, FAD, GATA,
NACS5, PSY1/2/3, TomloxC, ZDS, ZEP

Cell wall softening

B-GAL, EXP, MAN, PG, PL, PME,
PRX, TBG, ZAT

GLK, GRAS38, HY, MADS14, MYB1R1/44,
NAC2/25, PIF, PSY1, WRKY

Fig. 3. A schematic illustration of fruit ripening mechanism showing the coordination between phytohormones and transcription factors (TFs). Blue fonts indicate
the TFs and structural genes discovered in network analysis. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)
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is present only at a basal level. Numerous studies showed that the in-
hibition of ethylene perception by 1-MCP, an ethylene antagonist, led to
a delay in fruit ripening in tomato, mangosteen, kiwi, peach, and banana
(Piriyavinit et al., 2011). The ripening regulators for ethylene biosyn-
thesis genes (ACO and ACS) include TF Colorless Non-Ripening (CNR),
Ethylene Response Factor 9 (ERF9), Gibberellic-Acid Insensitive (GAI),
Repressor of GAI (RGA) and Scarecrow (SCR) 38 (GRAS38),
Non-Ripening (NOR), Ripening Inhibitor (RIN), and TOMATO
AGAMOUS-LIKE (TAGL), while ERF6 is the ripening inhibitor. NOR is
regulated by ABA as it contains the ABA-responsive element (Zhang
et al., 2009b). As auxin is also involved in fruit ripening, the
ethylene-auxin (IAA) crosstalk model in regulating fruit ripening was
proposed based on the correlation network analysis (Li et al., 2016).

On the other hand, abscisic acid (ABA) is the main phytohormone
that regulates non-climacteric fruit ripening. As 9-cis-epoxycarotenoid
dioxygenase (NCED) is the key enzyme involved in the biosynthesis of
ABA, high levels of NCED and ABA were detected during non-climacteric
fruit ripening such as Chinese jujube, strawberry, and grape (Medi-
na-Puche et al.,, 2016; Zhang et al., 2009a, ; Zhang et al., 2019d).
Exogenous ABA treatment on strawberries and grapes was reported to
enhance the softening process with increased anthocyanin content
(Fuentes et al., 2019). Conversely, exogenous treatment of nordihy-
droguaiaretic acid (NDGA), which is an inhibitor of ABA synthesis,
resulted in decreased ABA content and the absence of red pigment at the
strawberry receptacle (Li et al., 2019a).

During the ripening of both climacteric and non-climacteric fruits,
there are significant changes in metabolism and physiological traits. The
common processes that occur in climacteric and non-climacteric fruits
during ripening include cell wall softening, color changes (anthocyanin
and carotenoid accumulation), and the productions of lignin, phenolic
compounds, aroma, and volatiles, which involve diverse sets of genes
(Fig. 3).

6. Conclusion and perspectives

Omics-based network analysis has been adapted to study fruit
ripening in the recent decade. Network analysis focuses on the molec-
ular components in fruit ripening-related traits to identify hub and
structural genes, functional prediction of unannotated genes, and
determining the role of TFs in specific metabolic pathways. Reverse
genetic approaches such as RT-qPCR, enzyme activity assays, and
functional gene analysis are still needed to verify the predicted gene
functions and help to explain the different phenotypes. Nonetheless,
network analysis is useful to provide an in-depth and holistic under-
standing of the molecular mechanisms in fruit ripening. To date, the
number of network analysis in fruit ripening remains limited for tropical
fruit species. Therefore, it is imperative to encourage more studies using
omics approaches integrated with network analysis for a more complete
picture of the molecular and metabolic processes in fruit ripening.

Although network analysis is very useful for large-scale data inter-
pretation, there are several limitations and drawbacks. For instance,
since GCNs are limited to undirected networks, there might be bias as a
result of technical artifacts, assumption of normalized data, and incon-
sistent results from different co-expression module detection methods
(Langfelder et al., 2011; Ovens et al., 2021). In jujube, an ortholog of
Arabidopsis EGL3 protein, ZjbHLH15, did not participate in anthocyanin
synthesis as predicted by the PPINs (Li et al., 2019b). Hence, it is
important to perform validation experiments for functional character-
ization, such as mutant analysis, dual luciferase assay or yeast
two-hybrid (Y2H) to verify such PPI predictions.

Furthermore, the current findings from network analysis are only
limited to regulators that regulate certain metabolic pathways, which
act downstream of the well-known master regulators such as RIN, NOR,
and CNR. Are there other master regulators besides RIN, NOR, and CNR?
This is an open question that may be answered by searching for new hub
genes that are well connected to fruit ripening-related genes in network
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analysis. Transcriptome-wide analysis of hub gene mutants allows
screening of the affected genes for verification.

Recently, there are increasing studies that showed the involvement
of reactive oxygen and nitrogen species (ROS/RNS) in fruit ripening and
fruit quality through post-translational modifications (Corpas et al.,
2018; Gonzalez-Gordo et al., 2019; Gonzalez-Gordo et al., 2022b; Huan
et al., 2016; Zuccarelli et al., 2021). In addition, there is crosstalk be-
tween organelles and nucleus through retrograde or anterograde
signaling to regulate gene expression (Jan et al., 2022; Koussevitzky
etal., 2007; Wang et al., 2020b; Woodson and Chory, 2008). Studies had
shown that there are proteome changes in plastids (Barsan et al., 2012;
Rodiger et al., 2021), mitochondria (Cai et al., 2018; Gonzalez-Gordo
et al., 2022¢; Li et al., 2021b), and peroxisomes (Gonzalez-Gordo et al.,
2022a) during climacteric and non-climacteric fruit ripening. Hence,
future network analysis should include both ROS/RNS with a subcellular
context of organellar molecules to give a more comprehensive under-
standing of fruit ripening mechanism.

In the era of artificial intelligence (AI), machine learning (ML) has
not only been applied to network analysis to improve precision but also
to predict fruit quality and classify fruit ripeness. Instead of exploring
the molecules involved in fruit ripening, automation technology evalu-
ates parameters such as duration (time), temperature, relative humidity,
color, size, hardness, soluble solids content, and acidity for the devel-
opment of network analysis based on several classifiers like artificial
neural networks, decision trees, support vector machines, and k-nearest
neighbors (De-la-Torre et al., 2019). This helps farmers to identify fruit
quality and estimate ripeness to avoid fruit spoilage. In the future, both
Al and molecular-based network analysis could be combined for an
automated phenomics analysis to obtain better quality fruits with a
longer storage time.
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